PD-prime cordial labeling of graphs

نویسندگان

  • R Ponraj Department of Mathematics Sri Parakalyani College Alwarkurichi -627 412, India
  • S Somasundaram Department of Mathematics Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India
  • S SUBBULAKSHMI Research Scholar, Department of Mathematics Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India
چکیده مقاله:

vspace{0.2cm} Let $G$ be a graph and $f:V(G)rightarrow {1,2,3,.....left|V(G)right|}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\ $ d_{uv}= begin{cases} left[frac{f(u)}{f(v)}right] ~~if~~ f(u) geq f(v)\ \ left[frac{f(v)}{f(u)}right] ~~if~~ f(v) geq f(u)\ end{cases} $\ for all edge $uv in E(G)$. For each edge $uv$ assign the label $1$ if $gcd (p_{uv}, d_{uv})=1$ or $0$ otherwise. $f$ is called PD-prime cordial labeling if $left|e_{f}left(0right)-e_{f}left(1right) right| leq 1$ where $e_{f}left(0right)$ and $e_{f}left(1right)$ respectively denote the number of edges labelled with $0$ and $1$. A graph with admit a PD-prime cordial labeling is called PD-prime cordial graph. & & vspace{0.2cm}

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$4$-Total prime cordial labeling of some cycle related graphs

Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...

متن کامل

Prime Cordial Labeling of Some Graphs

In this paper we prove that the split graphs of 1,n K and are prime cordial graphs. We also show that the square graph of is a prime cordial graph while middle graph of is a prime cordial graph for . Further we prove that the wheel graph admits prime cordial labeling for . , n n B n  , n n B n P 8 4 n 

متن کامل

3-Equitable Prime Cordial Labeling of Graphs

A 3-equitable prime cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, ..., |V |} such that if an edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and gcd(f(u) + f(v), f(u)−f(v)) = 1, the label 2 if gcd(f(u), f(v)) = 1 and gcd(f(u) + f(v), f(u)− f(v)) = 2 and 0 otherwise, then the number of edges labeled with i and the number of edges labeled with j differ b...

متن کامل

Prime and Prime Cordial Labeling for Some Special Graphs

A graph G(V,E) with vertex set V is said to have a prime labeling if its vertices are labeled with distinct integers 1, 2, . . . , |V | such that for each edge xy ∈ E the labels assigned to x and y are relatively prime. A prime cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, . . . , |V |} such that if each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 ...

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

4-prime Cordial Graphs Obtained from 4-prime Cordial Graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if ∣∣vf (i)− vf (j)∣∣ 6 1, i, j ∈ {1, 2, . . . , k} and ∣∣ef (0)− ef (1)∣∣ 6 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 51  شماره 2

صفحات  1- 7

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023